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LETTER TO THE EDITOR 

The efficiency of the Flow approximation 

S P Obukhovt 
Nordita, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark 

Received 17 September 1984 

Abstract. The Flory approximation for the self-avoiding chain problem is compared with 
a conventional perturbation theory expansion. While in perturbation theory each term is 
averaged over the unperturbed set of configurations, the Flory approximation is equivalent 
to the perturbation theory with the averaging over the stretched set of configurations. This 
imposes restrictions on the integration domain in higher-order terms and they can be treated 
self consistently. The accuracy Sv/  Y of the Flory approximation for self-avoiding chain 
problems is estimated to be 10-’-10-2 for 1 < d < 4. 

The Flory method is widely used for the calculation of critical exponents in many 
problems of configurational statistics. Originally, it was proposed for the problem of 
the linear polymer with excluded volume (Flory 1971, Fisher 1969), but its simplicity 
and unexpected accuracy stimulated its application to various problems: branched 
polymer problem-animals, percolation (Isaacson and Lubensky 1980), directed animals 
and directed percolation (Redner and Coniglio 1982), the true self-avoiding walk 
problem (Pietronero 1983) and the problem of multicritical behaviour of linear chains 
(Majid et a1 1984) etc. 

There were attempts to apply this method in a modified form to a phenomenon of 
the irreversible aggregation: cluster-particle aggregation (Muthukumar 1983), and 
cluster-cluster aggregation (Kolb 1984, Obukhov 1984). See also the application of 
Flory theory for irreversible kinetic gelation (Pandey 1984). 

Nonetheless, this effectiveness of the Flory method remained as yet unexplained 
and no control of its accuracy is possible. Below we shall consider the accuracy of 
this approximation for the case of the linear polymer problem. This consideration can 
easily be extended to other problems of configurational statistics. 

The Flory method consists of calculation of the ‘free energy’ as a function of size 
of the polymer coil. This free energy consists of two terms. The first one is the elastic 
energy which is needed to stretch up to the size R the coil with unperturbed radius 
Ro- NI” (where N is the length of the polymer) 

Fe, = cI R2/  N. 

The second term is the repulsive energy of N monomers distributed uniformly in a 
volume R d  : 

Frep = c2 N 2 / R d .  

Here c,  and c2 are inessential numerical constants. Minimisation of the sum of (1) 
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and (2) with respect to R leads to the equilibrium radius R 

R - N u  with v = 3 / ( 2 + d )  ( d S 4 ) .  (3 )  

Although obtained in a very crude approximation, this formula gives successful estima- 
tions at d = 3 and d = 2, with an accuracy exceeding 1.5% and 0.3’53, respectively (see 
Majid et a1 1983). At d = 4 and d = 1, this formula is exact, but below d, = 4 it disagrees 
with the rigorous result of 4- E expansion: v = $ - & E  (de Gennes 1972), and near the 
marginal dimension d = 1 it disagrees with the result of 1 + E expansion v = 1 - + E  (see 
a review by Stanley et a1 1982, and references therein). 

Regarding the accuracy of (3), one often refers to the paper by de Gennes (1976). 
He considered that terms ( 1 )  and (2) are overestimated by factors of N2”-I and NY-’ 
and the effectiveness of the Flory formula follows from the proximity of the critical 
exponents 2v and y. However, this explanation is not satisfactory because these 
exponents are connected by the relation (2 - r ] )v  = y and the exponent r] is known 
not to be small at low dimension d. Moreover, near upper critical dimension d, = 4, 
where the difference 2 v - y is really small and of the order of E ~ (  E = 4 - d ) ,  formula 
(3) disagrees with the exact result of E expansion in first order of E. 

Now we shall construct the analogue of the Flory approximation in terms of 
perturbation theory, from which its accuracy can be estimated. The elastic energy of 
the N-monomer chain on a lattice can be written as follows 

Fe, = -In K( R), (4) 

where a is a lattice unit and K(R)  is a total number of all possible configurations, 
including self-intersected ones of size R. It should be pointed out here that the term 
‘stretched configuration’ is ill defined: the simplest stretched configuration is shown 
in figure l (a) ,  but it has the size R only in the direction of strain. Its probability is of 
the order of exp(-R2/Rg). The ‘typical’ stretched configuration which is useful to 
keep in mind can be thought of as a stretched polymer coil of figure l ( a ) ,  but with a 
few zigzags added as in figure l (b ) ,  so that in each direction the size of the configuration 

la 1 l b )  

Figure 1. ( a )  Polymer coil stretched in one direction, the probablity of such kind of 
configuration -exp(-h2R2/R2). ( b )  Stretched polymer coil with zigzags, so that in each 
direction the size of configuration is = R  

is of the order of R. The probability of such a configuration is exp(-h2(R2/Ri)), 
where A is the number of zigzags, so coefficient cI is equal to h2  in this picture. Any 
other configuration of size R >> R, which differs strongly from that of figure 1 ( b )  (with 
one more zigzag, for example) needs the longer initial polymer coil of figure 1 ( a )  and 
is exponentially rare compared to the configuration of figure l ( b ) .  In this picture the 
coil is stretched only on large scales, remaining Gaussian on small scales. Below we 
introduce the self-similar picture where the coil is stretched on all scales. 
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From all configurations X(  R )  we must choose only configurations without self 
intersection and the probability of such configurations can be written as 

=exp( ( p 2 ( x ) ) R + 2  p ( x ) + f  ( (p2(x)p2(x’)))R-* * a ) .  ( 5 )  
x,x’ 

Here p k ( X )  is the density of the kth segment of a chain at point x, p ( x )  = &  p k ( x ) ,  
(. . J R  denotes the average over all configurations of size R, and ((. . .))R denotes the 
irreducible average. The term Zx p ( x )  in ( 5 )  is linear in N and can be omitted. The 
product X(  R )  W (  R )  defines the most probable size of the configurations without self 
intersections. It takes its maximal value when the sum of arguments in ( 5 )  and in 
X(  R )  - exp( -c, R2/  N ) .  

is minimal. The first t y o  terms in ( 6 )  reproduce the Flory free energy (sum of (1) and 
( 2 ) ) .  Now the impact’of additional terms in ( 6 )  must be estimated. The difference 
between series ( 6 )  and the usual perturbation theory expansion comes from distinct 
averaging procedures. In the usual perturbation theory, each term is averaged over 
all unperturbed configurations, dominated by the size Ro. For an unperturbed set of 
configurations, the consecutive terms in ( 6 )  diverge at large scales at d < 4 and are, 
by a factor of the order of R:-d, larger than the previous ones, so one encounters the 
problem of the summation of the whole divergent series. 

In ( 6 ) ,  each term is rather averaged over the set of stretched configurations of size 
R. The large scales cannot be essential in this case. Consider the diagrammatic 
representation of the last term in ( 6 )  (figure 2 ) :  the path from x to x’ is duplicated 
three times and cannot be of order of R because in this case the full length of the 
stretched coil is larger than that for the typical stretched configuration, and this 
over-stretched configuration is exponentially rare compared to the typical stretched one. 

Figure 2 Diagram representation of the last term in ( 6 ) ;  the distance x - x ’  cannot be 
large because in this case the path from x to x’ is duplicated three times and the full length 
of stretched polymer coil (see figure ] ( a ) )  is larger than that for the typical one. This 
overstretched configuration is exponentially rare with respect to the typical ones. 

Hence, there must exist a maximal scale RI<< R at which the high-order terms are 
important, so that for the scales R’< r < R only binary interaction is relevant. The 
implication is, that instead of introducing monomers, we introduce new integrated 
units of size R‘ containing N ’  monomers, the application of the Flory approximation 
for free energy of the chain of such blobs 

F = c1 (RI  N /  N ’ )  + c2 ( N /  NI)’/(  R/ (7) 
will be correct. 
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In order to determine the number M of such blobs it should be noted that from 
the zigzag picture, figure l(b),  

M =  N / N ' = A  RIR'.  (8) 

Then it is reasonable to assume that the structure of the blob is similar to the structure 
of the entire coil. From this similarity, it follows that R = cN" and RI= c ( N / M ) " .  
Combining this with (8) we get 

M = A ' / ' - "  >> 1. (9) 

Considering the structure of a blob of radius R', we can pick out the smaller blobs of 
radius R" from which this blob is constructed etc. 

Thus, for a long N + a polymer chain there is a sequence of scales R, R' ,  R" . . . , 
such that at each interval R > r > R', RI> r > RI'. . . . the Flory approximation can be 
applied. 

The free energy of the whole coil, which is simply the sum of free energies at all 
scales, is now proportional to N instead of N2"-' in the original Flory formulation. 

The fact that M is a large, but finite, constant restricts the accuracy of the Flory 
method. From (9) it can easily be seen that the minimum of free energy is not very 
sharp when the number of blobs is finite. As the zigzag picture suggests that cI in (7)  
is A 2 ,  one readily finds the width of the distribution of most probable R and, by virtue 
of 

SR/R'.= MY+SYMY (10) 
we obtain 

6 v  2II2 1 _- - 
v ( d  +3)' /* v M 1 l 2  In M '  

The minimal number of zigzags in d-dimensional space is d. Then combining (3), (10) 
and (11) we get 

S v / v =  10-1-10-2 for l S d < 4  (12) 
so this rather rough evaluation gives results which are consistent with experimental 
data about the accuracy of the Flory method mentioned above?. 

The results of this letter can be summarised as follows. 
(1 )  The Flory approximation can be applied with rather high accuracy to the systems 

with short-range repulsive interaction. The repulsive interaction is necessary because 
it provides the averaging procedure over the stretched configurations, which reduces 
the input of high-order terms. The short-rarige character of the interaction is also 
necessary, because in the case of long-range forces, the stretching does not crucially 
reduce the value of high-order terms. 

(2) The Flory approximation cannot also be used for non-diluted solutions of 
polymers while the interaction between different polymers in a solution causes an 
effective long-range self interaction, but it can be used successfully in disordered 
system problems because of the replica trick which removes all vacuum contributions 
in the diagrams. 

I gratefully acknowledge the kind hospitality of the staff of Nordita during the work 
on this paper. 
f I want to thank L Peliti for a discussion and critical remarks about the accuracy of this evaluation. 
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